
Acta Cryst. (1999). A55, 289±304

Elastic scattering of partially coherent beams of fast electrons by a crystal with a defect
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Abstract

Scattering of a quasi-monochromatic electron beam by a
crystal with a defect is described with the use of the
mutual coherency function and the formalism of quasi-
Bloch waves. An expression correlating the mutual
intensity on the exit and entrance surfaces of the crystal
in terms of the scattering matrix has been found. The
matrix elements are determined by a system of integro-
differential equations, which have been obtained
without using the column approximation. It has been
shown that calculations of the matrix elements can be
signi®cantly simpli®ed when the approximation of the
small-angle scattering of quasi-Bloch waves by the
defect displacement ®eld is satis®ed. Such an approxi-
mation can be applied in many cases, e.g. to a crystal
with a dislocation. The mutual intensity on the crystal
entrance surface has been found for the general case of
defocused illumination. As an example of applying the
new approach, expressions for the intensity in conver-
gent-beam electron diffraction (CBED) and large-angle
CBED (LACBED) patterns have been obtained. The
LACBED patterns of a crystal with a dislocation have
been simulated. It has been shown that the developed
approach allows a more exact simulation of the
LACBED than do the conventional approaches using
the column approximation and the approximation of
independent plane waves ®lling the illumination cone.

1. Introduction

The diffraction of electrons with an energy higher than
100 keV by a crystal is usually described either with the
use of the plane-wave approximation or, if the beam is
convergent, with the approximation of independent
plane waves incident on the specimen within the illu-
mination cone. These approximations idealize the real
electron beam that is emitted by an extended source.
The coherent properties of the beam can range widely in
transmission electron microscopy. The accuracy of the
approximations is dependent on the in¯uence of defects
on the scattering of electrons and the conditions of both
illumination and image formation. On the other hand,
the approximation of coherent electron diffraction (Zuo
& Spence, 1993) can only be applied to the special case
of a subnanometre probe.

When high-resolution electron-microscopy images
are simulated, as a rule attention is given to the effect of
the incident beam convergence and the energy spread of
electrons on the microscope transfer function, while, for
the specimen transmission function, the approximation
of a `thin' object is used (Frank, 1973; Wade & Frank,
1977; Fejes, 1977; Hawkes, 1978; Ishizuka, 1980;
Humphreys & Spence, 1981). Limitations of this
approximation within the framework of the perturba-
tion method have been investigated by Coene et al.,
(1986). Rose (1984) proposed the use of the mutual
dynamic object spectrum for describing the diffraction
of electrons by the specimen under partially coherent
illumination.

The independent-plane-wave approximation is used
for simulating convergent-beam electron diffraction
(CBED) by a perfect crystal (Spence & Zuo, 1992).
Spence & Carpenter (1986) noticed that the intensity
distribution on the CBED patterns is independent of the
illumination coherency. A theoretical analysis validating
the applicability of the approximation to the real
conditions of illumination in the electron microscope
has been carried out by Borgardt (1995).

The independent-plane-wave approximation is used
for taking into account the incident beam convergence
in simulating images of the defects. For instance,
Katerbau (1981) used it to ®nd the diffraction contrast
of small dislocation loops, while Bithell et al. (1989) used
it to calculate the stacking-fault images in a weak beam.
This approximation together with the column approxi-
mation (Hirsch et al., 1965) are used in simulating CBED
and large-angle convergent-beam electron diffraction
(LACBED) by a crystal with a defect. Carpenter &
Spence (1982) calculated splitting of higher-order Laue-
zone lines caused by the presence of dislocation. Bird &
Preston (1988), Lu et al. (1990), Wang et al. (1992) and
Chou et al. (1992) simulated the LACBED patterns for a
crystal with a dislocation, while Wang et al. (1992) and
Wei et al. (1996) simulated the LACBED patterns for a
crystal with a stacking fault.

The shortcomings of the independent-plane-wave
approximation in describing the scattering of a conver-
gent electron beam lie in the fact that it takes no account
of the correlations between the waves incident on the
specimen at different angles. The angular size of these
correlations can be comparable with a divergent angle of
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wave bundles appearing after scattering a plane wave by
a crystal with a defect in the directions of the trans-
mitted and diffracted beams. Besides, the independent-
plane-wave approximation does not allow the change of
the incident beam coherent properties to be taken into
account when the beam is focused either above or below
the specimen. Recently, the applications of CBED for a
local quantitative determination of deformations in a
crystal have been investigated (see e.g. Maier et al., 1996,
for a review). Insuf®cient accuracy of the independent-
plane-wave and column approximations can result in
simulation errors, which would make the quantitative
comparison between the experimental and simulated
images dif®cult.

A theoretical approach allowing a description of
partially coherent electron beams scattered by a perfect
crystal without using the independent-plane-wave
approximation has been developed by Borgardt (1993a,
1996). The approach involves describing the diffraction
of each electron by a crystal and then taking into
account the incident beam coherent properties which
are characterized by the mutual coherency function and
the mutual intensity function. In the present paper, the
approach is developed for a crystal with a defect. In x2
an expression for mutual intensity at the exit from the
crystal is obtained. Calculation of the mutual intensity
on the specimen entrance surface in the general case of
defocused illumination is made in x3. x4 presents an
analysis of the intensity distribution in CBED and
LACBED patterns and simulation of the LACBED
patterns of a crystal with a dislocation.

2. Calculation of mutual intensity at the exit from the
crystal

2.1. General case

To investigate the structure of crystals by transmission
electron microscopy, a quasi-monochromatic beam is
used. The average energy E0 of electrons is equal to a
hundred or more keV. The energy semiwidth of the
beam, �E, is, as a rule, less than 1.5 eV and is dependent
on the construction of the electron gun. The energy of
the ith electron, Ei (jEi ÿ E0j � �E), is determined with
the accuracy �E. The �E value is related to the time of
emission of the electron by source �e based on the
uncertainty relation �E�e > h, where h is Planck's
constant (Landau & Lifshitz, 1977). It is clear that �E is
smaller than �E. The precise value of �E is not signi®-
cant for further discussion.

To describe the motion of electrons, we choose the
origin of the Cartesian system of coordinates at the
point of intersection between the microscope optical
axis and the entrance surface of the crystal, while the 0z
axis is directed along the normal to the surface deep into
the crystal. We make the origin of the coordinates in
reciprocal space coincident with one of the points of the

reciprocal lattice, while axes 0kx, 0ky, 0kz should be
parallel to the corresponding axes of the real space
(Fig. 1).

The incident stationary electron beam will be charac-
terized by the mutual coherency function, which deter-
mines the beam correlations at points r1 and r2 at the
moments t � � and t, respectively. According to the
de®nition introduced by Borgardt (1996), it is

ÿ�r1; r2; �� �
DP

i

P
i0

	�r1; t � �; i�	��r2; t; i0�
E
; �1�

where 	�r; t; i� is the wave function of the ith electron
describing the wave package that propagates from the
electron source through the specimen to the microscope
screen, while hi denotes the time average.

For the quasi-monochromatic beam, the time lag � is
usually much shorter than the time of the electron beam
coherency, �c � h=�E. In those cases, the expression for
the mutual coherency function can be written in the
form

ÿ�r1; r2; �� � J�r1; r2� exp�ÿ2�iE0�
�

h�; �2�
where J�r1; r2� � ÿ�r1; r2; 0� is the mutual intensity
characterizing the beam spatial coherency.

The mutual intensity function Jc�rc1; rc2� at points rc1

and rc2 on the crystal entrance surface is determined by
the microscope illumination system. It will be calculated
in x3. Calculation of mutual intensity at the exit of the
specimen and then in the electron-microscopy image or
in the diffraction pattern allows the average intensity
I(r) to be found by the formula

I�r� � J�r; r�: �3�
To describe the mutual intensity propagation through

the crystal, one should determine the relationship

Fig. 1. Selection of the coordinate systems for describing the electron
beam scattering by a crystal. The dot±dashed line represents the
microscope optical axis.
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between the electron wave function on its exit and
entrance surfaces. We present the wave function
	V�r; t; i� in vacuum near the crystal as a superposition
of de Broglie waves,

	V�r; t; i� � R R ~A�p;E; i�
� exp�2�i�k � rÿ Et=h�� dp dE; �4�

where AÄ (p, E, i) is the wave amplitude, which is non-
zero at E values that are of the order of �E different
from Ei, k is the wave vector, and p is the projection of
vector k onto the plane kx0ky. The modulus of the vector
k, jk�E�j, is equal to 1=��E�, where � is the relativistic
length of the electron wave, while its kz component is
determined by the relation kz�p;E� � �k2�E� ÿ p2�1=2.

Inside the crystal, the electron wave function can be
written as

	�r; t; i� � R 	S�r;E; i� exp�ÿ2�iEt=h� dE: �5�
Functions 	S�r;E; i� describing the stationary states

with energy E can be found from the SchroÈ dinger
equation, where relativistic corrections have been
introduced. In a crystal with a defect the atoms are
displaced from their ideal positions. If the function R(r)
describing these displacements is slowly changing at
distances comparable with the lattice constant, the
crystal potential can be described with the deformable
ion approximation (Hirsch et al., 1965). According to
Borgardt (1993b), the solution of the SchroÈ dinger
equation with such a potential can be presented as a
superposition of quasi-Bloch wave packages,

	S�r;E; i� �P
j

R
 �j��z; p;E; i�b�j�R �p; r;E� dp �6�

where

b
�j�
R �p; r;E� � b

�j�
R �k�j�0 ; r;E�

� exp�2�ik
�j�
0 � r�

P
g

C�j�g �p;E� exp�ÿ2�iRg�

� exp�2�ig � r�;
Rg � g � R�r�, b

�j�
R �p; r;E� is the jth quasi-Bloch wave

excited in the crystal by a plane incident wave with
energy E and transverse component of the wave vector
p,  �j��z; p;E; i� is the excitation amplitude of this wave,
k
�j�
0 is the vector with components �px; py; k

�j�
0z�p;E��; and

g is a reciprocal-lattice vector.
From the de®nition of quasi-Bloch waves, it follows

that they can be found on the basis of the Bloch-wave
functions of a perfect crystal. Amplitudes  �j��z; p;E; i�
describe the excitation degree of points on the branches
of the dispersion surface, which is varied because of the
intrabranch and interbranch scattering of quasi-Bloch
waves by the displacement ®eld of the defect when they
are passing through the crystal. Variations of quasi-
Bloch waves produced by inelastic scattering can be
taken into account conventionally, i.e. by adding a small

imaginary part to the kz component of the wave vector
k
�j�
0 . Unlike the case of a perfect crystal, the integration

region in (6) cannot be selected within the two-dimen-
sional Brillouin zone since quasi-Bloch waves are not
periodical in reciprocal space. Therefore, the range of p
vectors for which  �j��z; p;E; i� is non-zero is deter-
mined by the convergence of the incident beam and the
scattering of quasi-Bloch waves by the defect displace-
ment ®eld.

Variations of quasi-Bloch-wave amplitudes are des-
cribed by a set of integro-differential equations, which
have been obtained by Borgardt (1993b) for the inci-
dent beam with a small convergency. As is shown in
Appendix A, this equation set remains valid for beams
with arbitrary convergency and can be written as

@ �l��z; p;E; i�
@z

�
X

j

L̂lj�z;E� �j��z; p;E; i�; �7�

where the integral operators L̂lj�z;E� are determined by
the expression

L̂lj�z;E� �j��z; p;E; i�
� 2�i

Z X
g

C�l���p;E�C� j�g �p0;E��1� gz=K0�

�  � j��z; p0;E; i� expf2�i�k�j�0z�p0;E� ÿ k
�l�
0z�p;E��zg

�
�
@

@z
� 2�i

�p0 � gp� � �p0 ÿ p�
Kgz�p;E�

�
� ~Rg�z; pÿ p0� dp0;

~Rg�z; p� � R Rg�r� exp�ÿ2�ip � q� dq;

Kg � K0 � g, K0 � �k2�E� � U0�1=2, U0 is the normalized
mean crystal potential, gp is the projection of vector g
onto plane kx0ky, q is the projection of the vector r onto
plane x0y.

Let us divide the crystal along the 0z axis into N equal
layers of thickness �z � ze=N, where ze is the crystal
thickness. Having selected point zm in the middle of the
mth layer, we can write the solution of the equation set
(7) as

� �ze; p;E; i�� �
n

lim
N!1

ÿ�I� ��z�L̂�zN;E��� . . .

� ÿ�I� ��z�L̂�zm;E�� . . .

� ÿ�I� ��z�L̂�z1;E���o
� � �0; p;E; i��;

where [I] is the unit matrix, � � is the column matrix with
elements  �j�, �L̂�zm;E�� is the square matrix with
the elements L̂lj�zm;E�.

Assuming that the limit of the matrices product in the
braces is existent, we obtain
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� �ze; p;E; i�� � �M̂0�E��� �0; p;E; �i�;
where elements of the scattering matrix �M̂0� determine
the amplitude of the lth quasi-Bloch wave as

 �l��ze; p;E; i� �P
j

M̂0lj�E� �j��0; p;E; i�

�P
j

R
M0lj�p; p0;E� �j��0; p;E; i� dp0:

�8�
Amplitudes  �j� at z = 0 are determined by conditions

on the crystal entrance surface and for them, according
to Borgardt (1993b), we have

 �j��0; p;E; i� � ~A�p;E; i�C�j��0 �p;E�: �9�
Expression (9) remains unchanged also when the non-
zero Laue-zone re¯ections are taken into consideration.
This is readily apparent via calculations, as made by
Jones et al. (1977).

Substituting (9) into (8), we obtain

 �l��ze; p;E; i� � R Ml�p; p0;E� ~A�p0;E; i� dp0; �10�
where

Ml�p; p0;E� �P
j

M0lj�p; p0;E�C�j��0 �p0;E�:

From (10), it follows that amplitudes of quasi-Bloch
waves at the exit from the crystal are determined by the
elements of the scattering matrix [M]. The elements can
be found by considering the diffraction of the plane
incident wave

	V�r;E� � expf2�i�p0 � q� kz�p0;E0�zÿ E0t=h�g:
Then,

~A�p;E; i� � ��pÿ p0���Eÿ E0� �11�
and, according to (10), we have

 �l��ze; p;E� � Ml�p; p0;E���Eÿ E0� �12�
where ��x� is Dirac's delta function.

From expression (12), it can be seen that Ml�p; p0;E�
describe the excitation of points on the lth branch of the
dispersion surface after the scattering of the incident
plane wave by the crystal. To ®nd Ml�p; p0;E�, it is
necessary to solve the equation set (7) with the
boundary conditions (11) for different p0 and E0 values.

Using (6) and (10), for functions 	S�r;E; i� we obtain

	S�r;E; i� �P
j

R
~A�p0;E; i�Mj�p; p0;E�

� b
�j�
R �p; r;E� dp dp0: �13�

As �E is small, in calculating the wave function
	�r; t; i� we can assume that

C�j�g �p;E� ' C�j�g �p;Ei� �14�

Mj�p; p0;E� ' Mj�p; p0;Ei� �15�

k
�j�
0z�p;E� ' k

�j�
0z�p;Ei� � �Eÿ Ei�=hv�j�z �p;Ei� �16�

where v�j�z � �1=h�@E=@Re�k�j�0z� is the z component of
the electron velocity for the jth branch while variations
of the imaginary part of k

�j�
0z are considered to be negli-

gible.
Following Borgardt (1996) further, after substitution

of (13) into (5) with (4), and with (14) to (16) taken into
account, for the electron wave function at the point re on
the crystal exit surface we ®nd

	�re; t; i� �P
j

R R
	v�rc; t ÿ ze=v�j�z �p;Ei�; i�

�Mj�p; p0;Ei�b�j�R �p; re;Ei�
� exp�ÿ2�iEize=hv�j�z �p;Ei��
� exp�ÿ2�ip0 � qc� dp dp0 dqc �17�

where rc is a vector on the entrance surface of the crystal
with components ��cx; �cy; 0�:

Substituting (17) into (1), assuming that relations (14)
to (16) remain valid at E � E0 for all electrons of the
beam and taking into account that the time lag �
between any points re1 and re2 is much smaller than the
coherency time �c we obtain for mutual intensity at exit
from the crystal

Je�re1; re2� �
P

j

P
l

R R R R
~Jc�p01; p02�Mj�p1; p01�

�M�l �p2; p02�b�j�R �p1; re1�
� b

�l��
R �p2; re2� dp1 dp01 dp2 dp02; �18�

where

~Jc�p01; p02� �
R R

Jc�rc1; rc2�
� exp�ÿ2�i�p1 � qc1 ÿ p2 � qc2�� dqc1 dqc2;

where functions depending on energy are calculated at
E � E0.

According to (18), Je�re1; re2� depends on the illumi-
nation conditions determined by the function Jc�rc1; rc2�.
On the other hand, the defect displacement ®eld in¯u-
ences the scattering of the electron beam. This in¯uence
is described by the elements of the scattering matrix [M].
In obtaining (18), only the deformable ion approxima-
tion was used. Limitations of the approximation can
result in errors in descriptions of the electron scattering
in a region where the displacement ®eld R(r) is changing
quickly at distances comparable with the lattice
constant, e.g. in the vicinity of the dislocation core.
These errors can in¯uence the simulated intensity
distribution in the electron microscopy images of the
corresponding regions. However, they are not signi®cant
for simulating CBED or LACBED patterns of a crystal
with a defect.
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2.2. Small-angle scattering of quasi-Bloch waves

Let a plane incident wave with a transverse compo-
nent p0 of the wave vector be diffracted by a crystal with
a defect. If only the points whose transversal coordinates
are close to �p0x; p0y� are excited on the branches of the
dispersion surface when the quasi-Bloch waves are
scattered, then the equation set (7) can be simpli®ed
(Borgardt, 1993b). In such a case, one can assume that

C�j�g �p� ' C�j�g �p0� �19�
and take into account only the linear terms in the
expansion of the wave-vector kz component into the
Taylor series in the vicinity of p0,

k
�j�
0z�p� ' k

�j�
0z�p0� � a�j� � �pÿ p0�; �20�

where a�j� � @Rek
�j�
0z=@p, and the variation of the imag-

inary part of k
�j�
0z is neglected.

Introducing the excitation amplitude of the jth branch

'�j��r; p0� �
R
 �j��z; p� exp�2�i�pÿ p0� � q� dp; �21�

taking into account (19), (20) and making use of the
Fourier transformation properties, we obtain

@'�l��q; z; p0�=@z � 2�i
X

j

X
g

C�j��p0�C�l��g �p0�

� �1� gz=K0�
� expf2�i�k�j�0z�p0� ÿ k

�l�
0z�p0��zg

� '�j��q� �a�j� ÿ a�l��z; z�

�
��

@

@z
� hg �

@

@q

�
Rg�qÿ a�l�z; z�

�
;

�22�

where hg � �p0 � gp�=Kgz�p0�:
Expression (22) is a set of ordinary differential

equations, the solution of which is considerably simpler
than that of (7). Its peculiarity lies in the fact that
arguments x and y of the amplitudes '�j� on the right-
hand side depend on z, while the derivations of the
displacement ®eld are calculated at point �qÿ a�l�z; z�:

In each particular case, the applicability of the
equation set (22) can be estimated by analysing the
variation of C�j�g �p� and the effect of the neglected terms
in expression (21) within the region �px�py, and the
value of  �j��z; p� from which the integral in expression
(6) for the wave function is mainly determined. The
amplitude  �j��z; p�, necessary for estimations, can be
obtained on the basis of (21) and (22).

As an example, we consider the scattering of electrons
with 100 keV energy by a silicon crystal of thickness
ze � 150 nm and with a surface normal nk � �111�,
which contains an edge dislocation with the Burgers
vector b � 1

2 ��110� and the dislocation line nl � �110�.
Four-beam calculations were made for systematic
re¯ections ��220� and a plane incident wave with
px � ÿg�220=2 � ÿ2:6 nmÿ1, py � 0, since the variations
of C�j�g �p� and the effect of the neglected bilinear terms in
expansion (20) is maximum at the Bragg orientation of
the specimen. Functions '�j��r� were determined from
equation set (22), the numerical integration of which is
described in x4.2. The quasi-Bloch-wave amplitudes
were calculated by fast Fourier transformation.

Fig. 2 shows the dependencies of j �1��ze; px; 0�j,
C
�1�
0 �px; 0� and C

�1�
�220
�px; 0� with respect to px. From Fig.

2(a), it can be seen that the integral value in (6) is mainly
determined by the amplitudes  �j��ze; px; 0� at px varying
between ÿ2.65 and ÿ2.55 nmÿ1. According to Fig. 2(b),
variations of C

�1�
0 and C

�1�
�220

within the range �px are
relatively small. Estimations also show that variations of
k
�1�
0 �px; 0� can be signi®cant only in a very thick crystal.

Hence, approximate relations (19) and (20) have satis-
factory accuracy. Therefore, for a crystal with a dislo-
cation, considerable errors are not expected when
expressions (21) and (22) are used instead of (7) for
determining the quasi-Bloch-wave amplitudes  �j�.

Fig. 2. (a) Variations of the quasi-Bloch-wave amplitude modulus
j �1��ze; px; 0�j and (b) coef®cients C

�1�
0 �px; 0� (curve 1), C

�1�
�220
�px; 0�

(curve 2) in the vicinity of point px � ÿg�220=2.
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Based on (11) and (21), for the scattering matrix
elements we obtain

Mj�p; p0� �
R
'�j��qe; ze; p0�
� exp�ÿ2�i�pÿ p0� � qe� dqe: �23�

For each p0, the integral value in expression (18) for the
mutual intensity is mainly determined by the scattering
matrix elements Mj�p; p0�, with p satisfying the condition
jpÿ p0j< j�p=2j, where �p is a vector with compo-
nents ��px;�py�. As follows from the analysis of
equation (22) with relations (19) and (20) taken into
account, for such values of p one can assume the
approximation

'�j��qe; ze; p0� ' '�j��qe; ze; p� �24�
when (23) is calculated.

In cases where it is possible, expressions (22) and (23)
signi®cantly simplify the determination of the scattering-
matrix elements. They are used for simulating LACBED
patterns in x4.

3. Mutual intensity on the crystal entrance surface

The mutual intensity on the crystal entrance surface is
determined by the construction of the microscopy illu-
mination system and the selected illumination con-
ditions. An expression for ~Jc�p1; p2� at the critical
illumination of the specimen by an incoherent source
®lling the condenser diaphragm has been found by
Borgardt (1996). However, in obtaining, for instance,
LACBED patterns, the electron beam is focused either
above or below the specimen entrance surface.

To calculate the mutual intensity on the crystal
entrance surface for the general case, we discuss in detail
the regularities of its propagation through the micro-
scope optical system, shown schematically in Fig. 3. In
order to increase the convergence angle of the incident
beam and decrease its cross section in the illumination
system of modern microscopes, two additional lenses L3

and L4 are used. The lenses are located between the
condenser diaphragm and the specimen.

The condenser diaphragm behind lens L2 is the
aperture diaphragm of the microscope illumination
system. It limits the angular width of the electron beam
incident on the specimen. It is convenient ®rst to
calculate the mutual intensity in the plane D0 located
before the L3 lens and conjugated with the plane B0,
which is levelled with the specimen entrance surface at
its normal orientation to the microscope optical axis.
Planes D0 and B0 are �zD and �zB distant, respectively,
from planes D and B where the electron beam is
focused. For illumination systems without additional
lenses L3 and L4, which were widely used before, the D0

plane is coincident with the entrance surface of the
specimen.

We assume that the intermediate image of the source
SA (Fig. 3) is an effective incoherent source of electrons,
i.e. its size is many times larger than the size of the
coherency region of the electron beam in the A plane.
Such an approximation is justi®ed in the majority of
cases since at a critical illumination the coherent prop-
erties of the beam incident on the specimen are
dependent on the ratio between the size of the coherent
region and that of the illuminated area. The size of the
coherent region is determined by the condenser
diaphragm radius. If, with the condenser diaphragm
removed, the ratio is many times less than unity, the
image of source SA can be considered as an effective
incoherent source.

For certainty, we assume that SA is a homogeneously
illuminated circle with radius dA, though such an
assumption is not obligatory for further consideration.
The mutual intensity JA�lA1; lA2� in the A plane can be
represented as

JA�lA1; lA2� � IA�sA��A1���lA1 ÿ lA2�; �25�
where IA is the intensity of source SA, lAi is a vector in
the A plane, sA��A� is the form function, equal to one at

Fig. 3. The optical scheme of the specimen illumination in the electron
microscope. It shows the case when �zB < 0. S and SA are the
electron source and its intermediate image, respectively, L1 and L2

are condenser lenses, L3 is a mini-condenser lens, L4 is an objective-
condenser lens, Ca is a condenser diaphragm, and Sp the specimen.
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�A � dA and to zero at other values of �A. Constant �
has dimensions of area and determines the intensity
level of the illuminated areas but does not in¯uence the
spatial structure of mutual intensity. According to
Goodman (1985), we assume that � � �2

0=�, where
�0 � ��E0�.

As shown by Borgardt (1996), the propagation of the
electron wave mutual intensity between the optical
system elements and its journey through the lens are
described by formulas used in the optics of electro-
magnetic waves. Then, using the small-angle approxi-
mation of the Fresnel diffraction, the mutual intensity
propagation from the A plane to the L2 lens, according
to Goodman (1985), is given by the expression

JL�lL1; lL2� �
exp��i'L�
��0zA�2

Z Z
JA�lA1; lA2�

� exp

�
�i

�0zA

��2
A1 ÿ �2

A2�
�

� exp

�
ÿ 2�i

�0zA

�lL1 � lA1 ÿ lL2 � lA2�
�

� dlA1 dlA2; �26�

where 'L � ��2
L1 ÿ �2

L2�=�0zA, zA is the distance
between the A plane and the L2 lens, lLi is a vector in
the plane of the L2 lens.

After substitution of (25) into (26) and integration,
we obtain the well known relation (van Cittert-Zernike
theorem)

JL�lL1; lL2� / 2J1�X�=X; �27�

where X � 2�dAjlL1 ÿ lL2j=�0zA and J1�X� is the ®rst-
order Bessel function.

According to (27), the modulus of the mutual inten-
sity jJL�lL1; lL2�j decreases rapidly to a small value at
jlL1 ÿ lL2j> lsL, where lsL � �0zA=2�dA is the coher-
ency length of the electron beam in the plane of the L2

lens.
The mutual intensity after passing through lens L2

with focal distance fL is determined by the formula

J0L�lL1; lL2� � JL�lL1; lL2�

� exp

�
ÿ �i

�0fL

��2
L1 ÿ �2

L2�
�
: �28�

Taking into account that the condenser diaphragm
with the radius da is located in the vicinity of L2, for
mutual intensity JD0 �lD01; lD02� in the D0 plane we obtain

JD0 �lD01; lD02� �
exp��i'D0 �

��0�zD ��zD��2
Z

JL�la1; la2�

� sa��a1�sa��a2� exp

�
�i

�0

�
�

1

zD ��zD

ÿ 1

fL

�
��2

a1 ÿ �2
a2�
�

� exp

�
ÿ 2�i

�0�zD ��zD�
� �lD01 � la1 ÿ lD02 � la2�

�
dla1 dla2;

�29�
where 'D0 � ��2

D01 ÿ �2
D02�=�0�zD ��zD�, la1 and lD0i

are vectors in the condenser diaphragm plane and in the
D0 plane, respectively, sa��a� is the form function, equal
to one at �a � da and zero at other values of �a, and zd

is the distance between the condenser diaphragm and
the D plane.

The coherency length in the condenser diaphragm
plane is lsa ' lsL � �0zD=2�dD, where dD is the illumi-
nated circle radius in the D plane. In many cases one can
assume that lsa is many times smaller than the condenser
diaphragm diameter (incoherent illumination). Then
expression (29) can be simpli®ed. Introducing a new
variable l0a � la1 ÿ la2 we obtain

�2
a1 ÿ �2

a2 � 2l0a � la2 � ��0a�2
and

lD01 � la1 ÿ lD02 � la2 � lD01 � l0a � la2 � �lD01 ÿ lD02�:
Since, according to (27), function JL�la1; la2� differs

signi®cantly from zero only at jla1 ÿ la2j< lsL, we can
assume that

sa��a1� � sa�jla2 � l0aj� ' sa��a2�
and

exp

�
ÿ
�
�i

�0z0

�
��0a�2

�
' 1;

where

1=z0 � 1=zD ÿ 1=�zD ��zD�:
With the above taken into account, after substitution

of (26) into (29) we obtain

JD0 �lD01; lD02� �
IA� exp��i'D0 �
��0�zD ��zD��2

Z
sa��a�

� sD

����� zD

zD ��zD

lD01 �
�zD

zD ��zD

la

�����
� exp

�
ÿ 2�i

�0�zD ��zD�
� la � �lD01 ÿ lD02�

�
dla; �30�
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where sD��� � sA��zA=zD� is the form function of illu-
minated area in the D plane.

The expression determines the electron beam mutual
intensity in the D0 plane distant from the D plane where
the electron beam is focused. At �zD � 0 the size of the
illuminated area, i.e. the range of lD01 in which
JD0 �lD01; lD02� is non-zero, is determined by the function
sD��D01�. In this case, the coherency length
lsD � �0zD=2�da is determined by the size of the
condenser diaphragm and is the same for the whole
illuminated area.

At �zD 6� 0, mutual intensity is non-zero at lD01, for
which form functions sD and sa have a region in
common. The values of lD01 determining the illuminated
area are given by the formula

�D01 �
j�zDj

zD

�
da �

�zD

j�zDj
dD

�
� dD

' j�zDj
zD

da � dD � dD0 ;

where we took into account that da � dD, while dD0 is
the radius of the illuminated circle in the D0 plane.

At �zD 6� 0, function JD0 �lD01; lD02� and, hence, the
coherence length became different at different points of
the illuminated area. For central points, mutual intensity
can be calculated analytically by considering two cases.

In the ®rst case, �zD � zDdD=da or dD0 � 2dD: For
points lD01 satisfying the condition

jlD01j � 2dD ÿ dD0 ; �31�
the integration region in expression (30) is determined
by the function sa, and for JD0 �lD01; lD02� we obtain

JD0 �lD01; lD02� �
IA��d2

a exp��i'D0 �
��0�zD ��zD��2

2J1�X1�
X1

; �32�

where X1 � 2�dajlD01 ÿ lD02j=�0�zD ��zD�.
Since the value of �zD ��zD� determines the

distance between the condenser diaphragm and the D0

plane, formula (32) is similar to the expression for the
mutual intensity of the focused beam, while the coher-
ency length lsD0 � �0�zD ��zD�=2�da is increased or
decreased depending on the sign of �zD.

In the second case, �zD > zDdD=da or dD0 > 2dD. In
this case, at points lD01 for which

jlD01j � dD0 ÿ 2dD �33�
after integration, we obtain

JD0 �lD01; lD02� �
IA��d2

D exp��i'D0 �
��0�zD�2

� exp

�
2�i�da � dD�zD=j�zDj�
�0�zD ��zD��dD0 ÿ dD�

� lD01 � �lD01 ÿ lD02�
�

2J1�X2�
X2

; �34�

where X2 � 2�dDjlD01 ÿ lD02j=�0�zD.

From (34), it follows that, at suf®ciently large �zD

values, the coherency length lsD0 � �0�zD=2�dD in the
central region is determined by the angular size of the
focused electron beam with respect to the intersection
point of the microscope optical axis and the D0 plane.
The conclusion is in agreement with the results obtained
by Pozzi (1987), who used the Gaussian function both
for modelling the intensity of the effective incoherent
electron source and for the transmission function of the
condenser diaphragm. At peripheral points of the illu-
minated area which do not satisfy conditions (31) and
(33), the mutual intensity in both cases can be calculated
by a numerical integration of (30).

According to (18), the mutual intensity at the exit
from the crystal is determined by the mutual intensity
Fourier transform on its entrance surface. To ®nd
~Jc�p1; p2�, it is reasonable ®rst to calculate the Fourier
transform of mutual intensity ~JD0 �p1; p2� in the D0 plane.
To obtain ~JD0 �p1; p2�, we make the Fourier transforma-
tion of (30):

~JD0 �p1; p2� �
IA�

��0�zD ��zD��2
Z Z Z

sa��a�

� sD

����� zD

zD ��zD

lD01 �
�zD

zD ��zD

la

�����
� exp

�
�i

�0�zD ��zD�
��2

D01 ÿ �2
D02�

�
� exp

�
ÿ 2�i

�0�zD ��zD�
� la � �lD01 ÿ lD02�

�
exp�ÿ2�i

� �p1 � lD01 ÿ p2 � lD02�� dla dlD01 dlD02:

�35�
Introducing a new variable l0D0 � lD01 ÿ lD02, we have

�2
D01 ÿ �2

D02 � 2l0D0 � lD01 ÿ ��0D0 �2
p1 � lD01 ÿ p2 � lD02 � p2 � l0D0 � �p1 ÿ p2� � lD01:

From (32) and (34), it follows that the range of values
jlD01 ÿ lD02j at which the integrand in (35) is non-zero
has the same value order as the coherence length.
Hence, at the real value of zd and with not too
large a value of �zD, the relation expfÿ��i=�0�zD�
�zD����0D01�2g ' 1 is satis®ed.

With the above taken into account, we obtain

~JD0 �p1; p2� � IA�
R

sa�jlD01 ÿ ��zD ��zD�p2j�
� sD�jlD01 ÿ ��zDp2j�
� exp�ÿ2�i�p1 ÿ p2� � lD01� dlD01: �36�

Expression (36) is non-zero if the two circles deter-
mined by functions sa and sD have a region in common.
Therefore, vectors p2, for which ~JD0 �p1; p2� 6� 0 must
satisfy the condition
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p2 �
da

�0zD

� dD

�0zD

' �D

�0

; �37�

where �D � da=zD.
Making the substitution lD0 � lD01 ÿ �0�zDp2 and

having in mind that for almost all allowable vectors p2

the integration region in (36) is determined by function
sD, we ®nally have

~JD0 �p1; p2� � IA��d2
D

~SD�p2�
� exp�2�i��zDp2 � �p1 ÿ p2��
� �2J1�2�dDjp1 ÿ p2j�=2�dDjp1 ÿ p2j�; �38�

where ~SD�p� is the form function in reciprocal space
which appears according to (37). It equals one at
p � �D=�0 and zero at other values of p.

Now we calculate the mutual intensity and its Fourier
transform in the B0 plane. Since the exit pupil of the
microscope illumination system is determined by the
size of the condenser diaphragm, then, neglecting the
aberrations of lenses L3 and L4 and taking into account
Hawkes (1978), we have for mutual intensity in the B0

plane

JB0 �lB01; lB02� � �1=ÿ2
M�JD0 �lB01=ÿM; lB02=ÿM�; �39�

where lB0 i is the vector in the B0 plane and ÿM is the
magni®cation coef®cient of the optical system made up
of lenses L3 and L4.

By using formulas (26) and (28), one can directly see
that (39) is valid. Expression (39) allows the mutual
intensity in the B0 plane to be determined on the basis of
(30), (32) and (34) and taking into account that

dB0 � ÿMd0D; �40�
where dB0 is the radius of the illuminated circle in the B0

plane.
The relation between �zD0 and �zB0 can be found

with the help of Maxwell's elongation formula (Born &
Wolf, 1968). For small �zB values, it is

�zB ' �zDÿ2
M: �41�

Based on formulas (38) to (41) for the Fourier
transform ~JB0 �p1; p2�, we obtain

~JB0 �p1; p2� � IA��d2
B

~SB�p2�
� exp�ÿ2�i��zBp2 � �p1 ÿ p2��
� �2J1�2�dBjp1 ÿ p2j�=2�dBjp1 ÿ p2j�; �42�

where ~SB�p� � ~SD�pÿM�, ~SB�p� is equal to unity at
p � �B=�0 and zero at other values of p, �B is the semi-
angle of the incident beam convergency.

From (42), it follows that in the expression for
~JB0 �p1; p2� an additional phase factor appears when the
B0 plane is distant from the B plane where an electron
beam is focused. The importance of the factor increases
with increasing j�zBj.

In the above analysis, it has been assumed that the L2

condenser lens forms a real image of the electron source.
To minimize the cross section of the focused beam, the
L2 lens can be excited slightly while the L3 lens is not
excited at all (e.g. in the nanoprobe mode for modern
Philips microscopes). Then the L2 lens forms a virtual
image of the source. In this case, the mutual intensity
and its Fourier transform in the B0 plane can also be
calculated using (30), (39) and (42), respectively, since
functions JD0 �lD01; lD02� and ~JD0 �p1; p2� in the plane of
virtual images are formally described by (30) and (38).

Expressions (30), (39) and (42) directly determine the
mutual intensity Jc�qc1; qc2� and its Fourier transform
~Jc�p1; p2� on the entrance surface of the specimen when
it is oriented to be normal to the microscope optical axis.
At small deviations from the normal orientation,
Jc�qc1; qc2� can be calculated on the basis of the formula
for JB0 �lB01; lB02� by introducing a phase factor (see e.g.
Borgardt, 1996).

4. Simulation of a LACBED pattern

4.1. Intensity distribution in the diffraction pattern

Analysing the intensity distribution in diffraction
patterns, we consider a typical case of a plane-parallel
crystal oriented perpendicular to the microscopy optical
axis. Using (26) and (28), one can easily obtain an
expression correlating the mutual intensity Jf �lf 1; lf 2� in
the rear focal plane of the objective lens with that on the
crystal exit surface. The expression is well known in
optics (Goodman, 1985) and has the form

Jf �lf 1; lf 2� � �exp��i'f �=��0f �2� R Je�qe1; qe2�
� exp�ÿ�2�i=�0f �
� �qe1 � lf 1 ÿ qe2 � lf 2�� dqe1 dqe2; �43�

where 'f � �1ÿ zo=f ���2
f 1 ÿ �2

f 2�=�0f , zo is the distance
between the specimen and the objective lens, and f is the
focal distance of the objective lens.

Henceforth, for simplicity, we will limit ourselves to
discussion of diffraction patterns in which the neigh-
bouring discs are not overlapped. For CBED patterns,
such a situation does not arise if the convergency semi-
angle of the incident beam is smaller than the minimal
one among the Bragg angles. For LACBED patterns,
overlap of the neighbouring discs is avoided by intro-
ducing the selector diaphragm. After substitution of (18)
into (43) and taking (3) into account for the transmitted
beam intensity in the rear focal plane of the objective
lens, we have

If �lf � �
P

j

P
l

R R
~Jc�p1; p2�F�jl��qf �Mj�qf ; p1�

�M�l �qf ; p2� dp1 dp2; �44�
where
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F�jl��qf � � �1=��0f �2�C�j�0 �qf �C�l��0 �qf �
� expf2�i�k�j�0z�qf � ÿ k

�l��
0z �qf ��zeg

and qf � lf=�0f .
To make the physical sense of expression (44) clearer,

we will consider the case of incoherent critical illumi-
nation. According to (42), at �zB � 0 we have

~Jc�p1; p2� / ~SB�p2�
2J1�2�dBjp1 ÿ p2j�

2�dBjp1 ÿ p2j
: �45�

After substitution of (45) into (44), we obtain

If �lf � /
X

j

X
l

Z
~SB�p2�F�jl��qf �Mj�qf ; p1�M�l �qf ; p2�

� 2J1�2�dBjp1 ÿ p2j�
2�dBjp1 ÿ p2j

dp1 dp2: �46�

From (46), one can see that the intensity at point
lf � �0f qf in the diffraction pattern is contributed to by
all the plane waves incident on the crystal. The contri-
butions of waves with different wave vectors are deter-
mined both by the scattering matrix elements Mj�qf ; p�
and by correlations between the incident waves. Matrix
elements Mj�qf ; p� depend on the conditions of the
quasi-Bloch waves scattering by the displacement ®eld
of the defect. At large values of the modulus jqf ÿ pj,
modulus jMj�qf ; p�j rapidly becomes small. Under the
critical illumination, correlations between plane waves
with different wave vectors are determined by the cross
section of the electron probe. When the independent-
plane-wave approximation is used, these correlations
are not taken into account, i.e. it is assumed that

~Jc�p1; p2� / ~SB�p2���p1 ÿ p2�:
According to (45), this relation is valid if the illuminated
area on the entrance surface of the specimen is suf®-
ciently large.

Calculation of intensity If �lf � based on the general
formula (44) requires solving equations (7) for a large
number of qf and p values. If the scattering angles of
quasi-Bloch waves by the displacement ®eld of the
defect are small, calculations can be considerably
reduced by using (22) and (23) for determining
Mj�qf ; p�. Then, expressing the Fourier transform
~Jc�p1; p2� in terms of the mutual intensity function
Jc�rc1; rc2�, substituting (23) into (44) and taking (24) into
account, we obtain

If �lf � �
P

j

P
l

R R
Jc�qe1; qe2�F�jl��qf �'�j��qe1; ze; qf �

� '�l���qe2; ze; qf �
� exp�ÿ2�iqf � �qe1 ÿ qe2�� dqe1 dqe2: �47�

Equations (44) and (47) describe the intensity in the
diffraction pattern in the general case of partially
coherent illumination. Further simpli®cation of the
expression for If �lf � is possible at incoherent illumina-

tion. Then, using expression (42) for the Fourier trans-
form of mutual intensity and (23) and (24) for Mj�qf ; p1�,
after integration in (44) we have

If �lf � � IA��d2
B

~SB�qf �
P

j

P
l

F�jl��qf �

� R R '�j��qe ÿ �0�zBp; ze; qf �'�l���qe; ze; qf �
� exp�ÿ2�ip � �qe ÿ �0�zBqf ��
� exp�2�i��zBp2��2J1�2�dBp�=2�dBp� dqe dp:

�48�
Expression (48) describes the intensity distribution in

the diffraction pattern when the electron beam is defo-
cused. For CBED patterns at �zB � 0, it can be
presented in the form

If �lf � � IA� ~SB�qf �
P

j

P
l

F�jl��qf �
R
'�j��qe; ze; qf �

� '�l���qe; ze; qf �sB��e� dqe �49�
where sB��� � sD��=ÿM�.

From (49), it follows that for calculating the intensity
in the CBED patterns it is suf®cient to ®nd amplitudes
'�j� on the crystal exit surface within the area determined
by the cross section of the focused electron beam. If
calculation of '�j� is made with the column approxima-
tion, i.e. we assume that a�j� � 0 and hg � 0 when (22) is
solved (Borgardt, 1993b), for intensity If �lf � we obtain

If �lf � � �IA� ~SB�qf �=��0f �2� R I0�qe; ze; qf �sB��e� dqe;

�50�
where I0�qe; ze; qf � is the intensity of the transmitted
electron wave at point �qe; ze�, produced by the plane
incident wave with the transverse component of the
wave vector qf and which is calculated with the column
approximation.

For LACBED patterns after integration over qe in
(48), the range of p values at which the integrand is non-
zero is the same as for the function Mj�qf � p; qf �. Since
the typical value of dB is of the order of a few nano-
meters, for many defects one can assume that

2J1�2�dBp�=2�dBp ' 1

at all p for which the expression under the integral sign
in (48) differs from zero. Then, making a substitution of
variables

p0 � �qe ÿ �0�zB�p� qf ��=�0�zB;

we present If �lf � as

If �lf � � IA��d2
B

~SB�qf �
P

j

P
l

F�jl��qf �

� R R '�j���0�zB�qf � p0�; ze; qf �'�l���qe; ze; qf �
� exp�ÿ2�ip0 � �qe ÿ ��zBqf ��
� exp�2�i��zB�p0�2� dqe dp0: �51�
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Using expression (51) instead of (48) simpli®es
simulation of intensity since a numerical integration can
be made by fast Fourier transformation, which allows
the calculation time to be considerably reduced. If j�zBj
is suf®ciently small, the in¯uence of the factor quadratic
in p0 in (51) is negligible and we can assume that

'�j���0�zB�qf � p0�; ze; qf � ' '�j���0�zBqf ; ze; qf �:
�52�

Besides, if amplitudes '�j� are determined with the
column approximation, we obtain for intensity

If �lf � � �IA��d2
B=��0f �2� ~SB�qf �I0��0�zBqf ; ze; qf �:

�53�
Formula (53) was used by Bird & Preston (1988), Lu

et al. (1990), Wang et al. (1992) and Chou et al. (1992) for
simulating LACBED patterns of a crystal with a dislo-
cation. Errors arising in this case will be discussed in
x4.3.

4.2. Information localization and shortcomings of
conventional approximations

Expressions (49) and (51) make it possible to estimate
the cross size �� of the crystal region that in¯uences
the intensity at point lf � �0�zBqf in the diffraction
pattern. This size determines the information localiza-
tion when the displacement ®eld is investigated by
means of convergent-beam diffraction. Based on (49),
�� for CBED patterns can be presented as

���qf � � ��cr�qf � � dB; �54�
where ��cr�qf � � zemax�ja�j��qf � ÿ a�l��qf �j�, in which
`max' denotes the maximum value of the difference at
various j's and l's.

Estimation of ��cr follows directly from the analysis
of (22). ��cr appears in the right-hand part of (54)
because of the fact that quasi-Bloch packages transfer
the disturbances perpendicular to the excited sections of
the dispersion surface (Borgardt, 1993b). This is shown
schematically in Fig. 4 for a wave with transverse
component of the wave vector qf. In passing through the
defective region of the crystal, the quasi-Bloch waves
are scattered, and as a result the diffuse background
appears at the crystal exit. When the column approxi-
mation is used, the inclination of the excited parts of the
dispersion surface is neglected �a�j��qf � � 0� and, hence,
the spatial separation of the wave ®elds corresponding
to different branches of the dispersion surface is not
taken into account. Therefore, the accuracy of this
approximation is dependent on the values of a�j��qf �. If
the values of a�j��qf � are non-zero, the column-approxi-
mation errors are increased when the region of a strong
scattering of quasi-Bloch waves, e.g. the dislocation core,
becomes more distant from the crystal entrance surface.
The column-approximation errors are decreased when

the defect is displaced in the lateral direction with
respect to the illuminated area.

It is noteworthy that, in simulating electron micros-
copy images formed by a beam with a small conver-
gency, the column-approximation accuracy is increased
when the defect becomes more distant from the crystal
entrance surface (Borgardt, 1993b).

For LACBED patterns with j�zBj increasing, the
exponential factor which is quadratic in p0 becomes
signi®cant. This factor is responsible for an additional
term in the expression for ��. To evaluate �� in that
case we use the approximate relation (52). Then, for
If �lf � we have

If �lf � /
P

j

P
l

F�jl��qf �'�j���0�zBqf ; ze; qf �

� f'�l�� ��0�zBqf ; ze; qf �
� exp�ÿ�i��0�zBqf �2=2�0�zB�g; �55�

where � denotes the convolution operation. Since the
result of convolution is mainly determined by the values
of function '�l� at points q, for which

�qÿ �0�zBqf �2=2�0�zB �< 1;

we obtain

���qf � ' ��cr�qf � � dB � 2�2�0�zB�1=2:

At the defocus �zB � 10�, the �� value is mainly
determined by the last term, which equals 17 nm for
electrons with 100 keV energy.

The effect of the electron beam defocusing on ���qf �
can be seen in Fig. 5. For a perfect crystal, the intensity
at point lf � �0f qf in the LACBED pattern depends on

Fig. 4. Schematic diagram illustrating the transfer of the disturbances
by the quasi-Bloch-wave packages in a crystal with a defect. After
scattering in the crystal, only waves propagating in the direction of
the transmitted beam are shown. The upper part of the ®gure shows
the cross section of the dispersion surface with excited region. The
arrows show the directions in which the quasi-Bloch wave transfers
the disturbances.
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the diffraction of the incident plane wave whose trans-
verse component of the wave vector is equal to qf. In a
crystal with a defect, the scattering of each wave
produces a diffuse background. All the plane waves with
the transverse component of the wave vector qf contri-
bute to the intensity of point lf � �0f qf in the
LACBED pattern. The lateral size of the crystal region
which affects the intensity of this point increases with
increasing defocus j�zBj. The effect is fully neglected in
simulating intensity according to formula (53) obtained
with the use of the independent-plane-wave and column
approximations. Within the framework of these ap-
proximations, the intensity of each point of the
LACBED pattern is determined by scattering within the
column, with a size of 2±3 nm.

It should be noted that errors produced by the
independent-plane-wave approximation are not only
dependent on the value of �zB but also on the speed of
variations of the electron wave functions on the crystal
exit surface. Indeed, when the variations of amplitudes
'�j� are slow, the effect of convolution in (55) can be
neglected and (55) becomes equivalent to (53).

4.3. LACBED patterns of a crystal with a dislocation

As an example of the application of the developed
theory, we simulated the LACBED patterns of a silicon
crystal with an edge dislocation under incoherent illu-
mination. Calculations were made for the transmitted
beam of electrons with energy E0 � 100 keV. Four
systematic re¯ections of ��220� were included in the
simulation. As shown in x2.2, scattering of quasi-Bloch
waves in that case can be described with the use of the

small-angle approximation and expression (51) can be
applied.

Eigenvectors �C�j�� and eigenvalues k
�j�
0z were deter-

mined by the program of Zuo, Gjonnes & Spence
(1989), where the necessary changes were introduced.
For the real and imaginary parts of the silicon potential,
the data obtained by Radi (1970) and Weickenmeier &
Kohl (1991) were used. The 0kx axis was chosen along
vector g�220. To simplify the simulation, the dispersion
surface curvature along the 0ky axis was not taken into
account, i.e. it was assumed that

a�j��p� ' a�j��px; 0�: �56�

The well known expressions for the displacement ®eld
of a dislocation (Hirth & Lothe, 1982) were used.
According to (51), the intensity If �lf � is determined by
the amplitudes '�j� in the vicinity of point lf � �0�zBqf .
The values of '�j� with steps �x � 1 nm and �y � 1 nm
were found by the numerical integration of (22) using
the fourth-order Adams method. Since approximation
(56) was applied, for each value of y the amplitudes '�j�

were calculated at the nodes of the two-dimensional grid
oriented along the 0x and 0z axes. The amplitude values
between the grid nodes along the 0x axis were deter-
mined by a linear interpolation. The integration step was
varied from �z � 0:1 nm near the dislocation core to
�z � 3:2 nm at a distance from the core. After deter-
mining '�j� values, integration of (51) was carried out by
fast Fourier transformation.

Calculations were made using a personal computer
with a Pentium 133 MHz processor. Simulating the
LACBED pattern with a size of 70 � 70 points took
about four hours. The developed calculation method can
be extended to simulating images of the general
displacement ®elds in the LACBED. It is also not dif®-
cult to include non-systematic re¯ections.

Figs. 6 and 7 show the LACBED patterns of an
inclined dislocation. The patterns were calculated on the
basis of both (51) and (53), with the use of independent-
plane-wave and column approximations. The orienta-
tion of the crystal and that of the dislocation, and the
specimen thickness are the same as in x2.2. Patterns in
Figs. 6(a) and 7 were calculated using the same condi-
tions, except for the sign of �zB, as were used by Wang
et al. (1992) to obtain experimental and simulated
LACBED patterns. The patterns labelled B in Figs. 6(a)
and 7 are in good agreement with the simulation results
of Wang et al. (1992).

In Figs. 6 and 7, the intensity distributions in patterns
A and B are essentially different from each other in the
vicinity of the dislocation image. Comparing patterns C
and E in Figs. 6(a) and (b), one can see that with
increasing j�zBj, errors in the case of the independent-
plane-wave approximation increase in calculations both
with or without the column approximation. As was
noted in x4.2, the effect is caused by the increase of the

Fig. 5. Schematic view of the electron beam scattering in a crystal with
a defect in LACBED. Wave 2 and diffuse waves 10 to 30 0 contribute
to the intensity at point lf � �f qf . The dashed lines show the limits
of the illuminated cone.
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lateral size of the crystal region �� where scattering
contributes to the intensity of each point in the
LACBED pattern. Increase in �� in¯uences such points
in the diffraction pattern which correspond to the elec-
tron beam scattering in the defective region of the
crystal near the dislocation.

The column approximation also results in errors in
simulation. From patterns B and D in Fig. 6 and pattern
B in Fig. 7, it is clear that the intensity distributions are
symmetrical with respect to the straight line passing
across the pattern centre normal to the �220 re¯ection
line. The symmetry is disturbed in the A patterns
obtained without the column approximation. The
symmetry disturbance is the result of the fact that
because of the inclination of the dislocation the upper
part of the dislocation image corresponds to the region
of its intersection with the crystal entrance surface, while
the lower part corresponds to the region at its inter-
section with the crystal exit surface. In x4.2, we noted
that the accuracy of the column approximation depends

on the distance between the dislocation core and the
entrance surface of the specimen. Because of this
dependence, the dislocation images in the A patterns are
asymmetrical.

Fig. 7 shows the intensity distributions in LACBED
patterns versus the dislocation distance from the zone
axis. It can be seen that the differences between patterns
A and B are qualitatively more pronounced in Figs. 7(b)
and (c) than in Figs. 6(a) and 7(a). The dislocation
images in the A patterns in Figs. 7(b) and (c) are much
more blurred than those in the B patterns. This is mainly
because in the patterns in Figs. 7(b) and (c) the intensity
varies faster with the size at �� than in the patterns in
Figs. 6(a) and 7(a). Therefore, the independent-plane-
wave approximation ensures a lower accuracy in simu-
lating the dislocation image. Comparison of the simu-
lation result with the experimental patterns (Wang et al.,
1992) shows that the A patterns in Figs. 7(b) and (c) are
in better agreement with experiments than the B
patterns.

Fig. 6. Simulated LACBED patterns of a crystal with an inclined dislocation (a) at �zB � ÿ10� and (b) at �zB � ÿ14�. The dislocation core
projection onto the 0x axis is xd � 115 nm distant from the origin. The A patterns are calculated with the use of the developed approach, the B
patterns with the independent-plane-wave and column approximations, and the D patterns only with the column approximation. Patterns C
and E are the differences between B and A, and B and D, respectively. The intensity is normalized so that without a specimen its value equals
one at all the illuminated points in the diffraction pattern. In (a), the grey scale for patterns A, B and D is shown adjacent to A, while for
patterns C and E it is adjacent to C. nk � �111�; b � 1

2 ��110�, nl � �110�, ze � 150 nm.
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When comparing the simulated and experimental
patterns, one can also notice some shortcomings of the
column approximation. In particular, the symmetry
disturbances of regions � and � in the A pattern in Fig.
7(b) are well pronounced in the experimental LACBED
patterns. As is seen from the B pattern in Fig. 7(b), using
the column approximation does not result in the
appearance of such asymmetry.

Thus, the results of simulation show that the devel-
oped approach allows a more accurate calculation of
LACBED patterns than do approaches with the inde-
pendent-plane-wave and column approximations.

5. Conclusions

To describe the dynamical diffraction of partially
coherent electron beams by a crystal with a defect, the
mutual coherency, the mutual intensity functions and
formalism of quasi-Bloch wave have been used. An
analytical expression correlating the mutual intensities
on the exit and entrance surfaces of the crystal in terms
of the scattering matrix has been obtained. The matrix

elements describe the excitation of points on the bran-
ches of the dispersion surface after the plane incident
wave being scattered. The elements can be found by
solving the system of integro-differential equations
determining the intrabranch and interbranch scattering
of quasi-Bloch waves by the defect displacement ®eld.
The equations have been obtained without the column
approximation, while the effect of the defect displace-
ment ®eld on the crystal potential has been taken into
account by using the deformable ion approximation.

For many defects, e.g. dislocations, quasi-Bloch waves
passing through the crystal are scattered at small angles.
In that case, the scattering matrix elements can be found
by solving the system of ordinary differential equations.
The numerical integration of this system is not more
dif®cult than the solution of equations for the ampli-
tudes of quasi-Bloch waves obtained with the column
approximation (Wilkens, 1964).

Mutual intensity on the entrance surface of the crystal
has been found for the general case of defocused illu-
mination by an incoherent source of electrons. An
important case of incoherent illumination when the
coherency length of the incident beam in the condenser

Fig. 7. Simulated LACBED patterns of a crystal with a dislocation at (a) xd � 178 nm, (b) xd � 207 nm and (c) xd � 221 nm. The A patterns are
calculated with the use of the developed approach, the B patterns with the independent-plane-wave and column approximations. The C
patterns are the differences between B and A. �zB � ÿ10�. The other details are the same as in Fig. 6.
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diaphragm plane is many times smaller than the
diaphragm size has been considered. Expressions for
mutual intensity in the central region of the specimen
illuminated area at various defocus �zB values have
been obtained. It is shown that at large �zB the coher-
ence length is inversely proportional to the angular size
of the focused beam cross section, which is determined
with respect to the cross point of the microscope optical
axis with the specimen entrance surface. The effect of
defocusing on the mutual intensity Fourier transform of
the incident beam, determining the mutual intensity at
the exit from the crystal has been found.

As an example of the application of the general
theory, expressions for intensity on LACBED patterns
under various illumination conditions have been
obtained. The expressions made it possible to take into
account the coherent properties of the incident electron
beam and to describe its scattering by the crystal using
only the deformable ion approximation for the lattice
potential. Since the effect of the errors of that ap-
proximation on the intensity of LACBED patterns is
weak, the expressions obtained can be used for simu-
lation of images that are quantitatively comparable with
the experimental ones. Calculations necessary for
simulation are considerably reduced if the experimental
images are obtained under incoherent illumination and
the scattering of quasi-Bloch waves can be described
with the use of the small-angle approximation.

For the case of incoherent illumination, it has been
shown that the approximation of independent plane
waves ®lling the illumination cone allows a correct
determination of the intensity in LACBED patterns
only at a small defocus of the electron beam. A formula
for estimating the locality of the convergent-beam
diffraction method when the displacement ®eld in a
crystal is investigated has been obtained. For CBED
patterns, the locality is determined by the size of the
electron beam on the specimen entrance surface, mutual
orientation of the excited parts on the dispersion surface
and the crystal thickness. In the LACBED patterns, the
intensity at each point is dependent on the scattering
conditions of the electron beam in the crystal region
whose lateral size is about 2�2�0�zB�1=2.

To demonstrate the theory, the LACBED patterns of
a crystal with an inclined dislocation under incoherent
illumination has been simulated. It has been found
that the intensity distribution obtained with the new
approach differs from that simulated with the use of the
independent-plane-wave and column approximations.
Causes of the shortcomings of those approximations
have been analysed. Errors of conventional approxi-
mations increase with increasing j�zBj or when the
image of a dislocation becomes more distant from the
zone axis. Comparison of simulated patterns with the
experimental patterns obtained by Wang et al. (1992)
shows that the developed approach allows a more exact
description of the large-angle convergent-beam electron

diffraction than do the independent-plane-wave and
column approximations.

APPENDIX A

As shown by Borgardt (1993b), amplitudes  �j� for each
value of E and i satisfy the equationX

j

X
g

Z �
k�j�gz

@ �j�

@z
ÿ  �j��2�ik�j�g � rRg ÿ F�

�
� C�j�g exp�2�ik

�j�
0 � r� exp�2�iRg�

� exp�2�ig � r�dp � 0; �57�
where k�j�g � k

�j�
0 � g, F � �i�rRg�2 ÿ 1

2 �Rg.
Quantity F is essential only when @Rg=@z � 0 and will

be ignored for simplicity. Using the Fourier transfor-
mation, rRg�r� can be presented in the form

rRg�r� �
Z �

ez

@

@z
� 2�ip

�
~Rg�z; p� exp�2�ip � q� dp:

�58�
Substituting (58) into (57), we obtainX

g

Z �X
j

�
k�j�gz�p�

@ �j��z; p�
@z

C�j�g �p� exp�2�ik
�j�
0z�p�z�

ÿ 2�i

Z
 �j��z; p0�C�j�g �p0� exp�2�ik

�j�
0z�p0�z�

�
�

k�j�gz�p0�
@

@z
� 2�i�p0 � gp� � �pÿ p0�

�
� ~Rg�z; pÿ p0�dp0

��
exp�2�ip � q� exp�ÿ2�iRg�

� exp�2�ig � r� dp � 0: �59�
Since the terms in braces are independent of q,
expression (59) is satis®ed when each term is equal to
zero, X

j

�
k�j�gz�p�

@ �j��z; p�
@z

C�j�g �p� exp�2�ik
�j�
0z�p�z�

ÿ 2�i

Z
 �j��z; p0�C�j�g �p0� exp�2�ik

�j�
0z�p0�z�

�
�

k�j�gz�p0�
@

@z
� 2�i�p0 � gp� � �pÿ p0�

�
� ~Rg�z; pÿ p0�dp0

�
� 0: �60�

Hitherto, we have not imposed any limitations upon
the eigenvectors [C(j)]. If they are determined by the
solution of the eigenvalue problem with a complex
potential, equations for the amplitudes  �j� can be
obtained using the matrix form of (60). If absorption in
the crystal is taken into account by the perturbation
method and the eigenvalues are calculated with the use
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of the real part of the potential, then coef®cients C�j�g

satisfy the normalization condition (Jones et al., 1977)P
g

C�j�g �p�C�l��g �p��1� gz=K0� � �jl; �61�

where �jl is the Kronecker symbol.
We restrict ourselves to considering the second case.

For k�j�gz(p) that are not included in the exponential
functions, we assume that

k�j�gz�p� ' k�l�gz�p� ' Kgz�p�: �62�
Multiplying the gth equation of the system (60) by

C�l��g �p��1� gz=K0�, we sum up all equations and, taking
into account (61) and (62), we obtain equation system
(7).
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